I B.Tech - II Semester – Regular Examinations - JULY 2024

DIFFERENTIAL EQUATIONS & VECTOR CALCULUS (Common for ALL BRANCHES)

Duration: 3 hours

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.
- BL Blooms Level

CO – Course Outcome

$\mathbf{PART} - \mathbf{A}$

		BL	CO
1.a)	Check whether the equation $(sinxcosy + e^{2x})dx + (cosxsiny + tany)dy = 0$ is exact differential equation or not	L2	CO1
11)	differential equation or not.		
1.b)	Find the integrating factor of $x \frac{dy}{dx} + y = logx$.	L2	CO1
1.c)	Define Auxiliary equation and Wronskian.	L1	CO2
1.d)	Find the Particular integral of $(D^3 + 4D)y = sin2x$.	L1	CO2
1.e)	Form a partial differential equation by eliminating arbitrary constant 'a' from $Z = alog\left(\frac{b(y-1)}{1-x}\right).$	L3	CO2
1.f)	Form a partial differential equation by eliminating arbitrary function ' φ ' from $Z = e^{my}\varphi(x - y)$.	L3	CO2
1.g)	Define directional derivative and gradient of a scalar point function.	L1	CO3

Max. Marks: 70

1.h)	Find the $div\vec{F}$ and $curl\vec{F}$ where	L3	CO3
	$\vec{F} = grad(x^3 + y^3 + z^3 - 3xyz).$		
1.i)	State the Green's theorem.	L2	CO5
1.j)	If $\vec{F} = 3xy\vec{\iota} - y^2\vec{j}$, Calculate, $\int_c \vec{F} \cdot d\vec{r}$ where 'C' is the curve in the xy-plane y=2x ² from (0,0)	L3	CO5
	to $(1,2)$.		

PART – B

			BL	CO	Max.		
					Marks		
		UNIT-I					
2	a)	Solve the differential equation	L3	CO2	5 M		
		$xy(1+xy^2)\frac{dy}{dx}=1.$					
	b)	Find the solution to the differential	L1	CO4	5 M		
		equation. $ye^{xy}dx + (xe^{xy} + 2y)dy = 0$					
		OR					
3	a)	A bacterial culture, growing	L2	CO4	5 M		
		exponentially increases from 200 to 500					
		grams in the period from 6 am to 9 am.					
		How many grams will be present at					
		noon?					
	b)	Calculate the general solution of the	L3	CO4	5 M		
		differential equation					
		(ylogy)dx + (x - logy)dy = 0.					

	UNIT-II					
4	a)	A condenser of capacity C discharged	L4	CO2	5 M	
		through an inductance 'L'& resistance R				
		in series and the charge 'q' at time 't'				
		satisfies the equation				
		$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} = 0$, given that L=0.25				
		henries, R=250 ohms and				
		$C = 2 \times 10^{-6} farads$, and that when				
		t=0, charge q is 0.002 coulombs and the				
		current $\frac{dq}{dt} = 0$, obtain the value of 'q' in				
		terms of 't'.				
	b)	Solve $(D^2 + D + 1)y = (1 - e^x)^2$.	L3	CO2	5 M	
		OR		·		
5	a)	Calculate the particular integral of	L3	CO2	5 M	
		$(D^3 + 1)y = \sin(2x + 3).$				
	b)	Solve $(D^2 + 4)y = tan 2x$.	L3	CO2	5 M	
		UNIT-III				
6	a)	Solve the partial differential equation	L3	CO2	5 M	
		$(D^2 - 2DD' + {D'}^2)z = e^{x+y}.$				
	b)	Determine the solution to the equation	L3	CO4	5 M	
	,	$xp - yq = y^2 - x^2.$				
OR						
7	a)	Solve $\frac{y^2 z}{x} p + xzq = y^2$.	L3	CO2	5 M	
	b)	Form a partial differential equation by	L2	CO2	5 M	
		eliminating the arbitrary constants from				
		the differential equation of all spheres whose centres lie on the z-axis.				
		whose centres he on the 2-axis.				

	UNIT-IV					
8	a)	Find the directional derivative of	L4	CO5	5 M	
		$\varphi = xy^2 + yz^3$ at the point (2,-1,1) in				
		the direction of the normal to the surface				
		$x log z - y^2 = -4$ at (-1,2,1)				
	b)	Prove that $div(r^n\vec{r}) = (n+3)r^n$	L3	CO3	5 M	
		OR				
9	a)	Show that $\nabla^2(r^m) = m(m+1)r^{m-2}$	L3	CO3	5 M	
	b)	Identify the values of 'a' and 'b' such	L2	CO3	5 M	
		that the surface $ax^2-byz=(a+2)x$ and				
		$4x^2y+z^3=4$ cut orthogonally at (1,-1,2).				
	ſ	UNIT-V				
10	Ver	tify Green's theorem $\int_C (3x - 8y^2) dx +$	L4	CO5	10 M	
	(4 <i>y</i>	y - 6xy) dy where 'C' is the boundary of				
	the	region bounded by the x=0, y=0 and				
	x+y	<i>z</i> =1.				
OR						
11	Cal	culate	L3	CO5	10 M	
	\int_{S}	$\overline{F}.\overline{n}ds where\overline{F} = 2x^2y\overline{\iota} - y^2\overline{\jmath} + 4xz^2\overline{k}$				
	and	'S' is the closed surface of the region in				
	the	first octant bounded by the cylinder				
	y^2	$+z^2 = 9$, and the planes x=0, x=2, y=0				
	and	z=0.				